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Abstract. The spin-Peierls instability in a spin-1
2 XY chain coupled to dispersionless phonons

of frequencyω has been studied in the non-adiabatic limit. We have chosen the Lang–Firsov
variational wavefunction for the phonon subsystem to obtain an effective spin Hamiltonian. The
effective spin Hamiltonian is then solved in the framework of the mean-field approximation and
bond operator technique. We observed two types of phase transitions, one is from the spin liquid
phase to the dimerized phase and the other is from the dimerized phase to the antiferromagnetic
phase as we vary the spin–phonon coupling from a very low value. The variation of lattice
distortion, dimerized order parameter and energy gap with spin–phonon coupling parameter
have also been investigated here.

1. Introduction

The discovery of the spin-Peierls transition in CuGeO3 [1] has sparked an intense effort
to study the properties of this quasi-one-dimensional magneto-elastic system where the
coupling of the magnetic to the lattice degrees of freedom leads to a phase transition into
a dimerized phase. This magneto-elastic transition is due to the competition between the
gain in magnetic energy due to dimerization and the loss in the elastic energy of the lattice
distortion. Recently quite a large number of experimental [2–5] and theoretical [6–13] works
have been performed to investigate the various aspects of the spin-Peierls systems. Except
for a few [14–16], most of the theoretical investigations rely on the adiabatic treatment of the
phonons. In adiabatic approaches one assumes that the phonons responsible for the distortion
have low energy with respect to the characteristic energies for the spin systems (e.g. the gap
= 1). The experimental evidence for CuGeO3 indicates that the application of the adiabatic
approximation to these systems is not sufficient. Regnaultet al [17] investigated the spin
dynamics of the spin-Peierls system CuGeO3 by inelastic neutron scattering. Their result
confirmed the existence of a gap (1) in the magnetic excitations at1 = 2 meV= 23 K
and the Heisenberg exchange parameter was estimated to beJ1 = 10.6 meV = 115 K.
Bradenet al [18] found by symmetry that four optical phonons are possible candidates for
the spin-Peierls distortion in CuGeO3. Among these four modes two, one of energy 330 K
and the other of energy 150 K are experimentally found to be suitable candidates for the
spin-Peierls distortion. In both cases we find that the phonon frequency is larger thanJ as
well as1. Whenω > 1 the spin–phonon interaction is unretarded and non-adiabatic effects
or quantum lattice fluctuations become important. Fradkin and Hirsch [19] considered the
Su–Schrieffer–Heeger model [20] of electron–phonon interaction for spinless fermions and
spin-1

2 electrons in one dimension to investigate the stability of the Peierls-dimerized ground

0953-8984/98/398851+12$19.50c© 1998 IOP Publishing Ltd 8851



8852 S Sil

state against quantum fluctuations. In that work they showed by renormalization group
arguments and by quantum Monte Carlo simulation that for spinless fermions quantum lattice
fluctuations destroy the long-range dimerization order when the fermion–phonon coupling
constant is small and predicted a transition from an undimerized ground state to a dimerized
phase when the fermion–phonon interaction is larger than a critical value. Campbell and
Bishop [21] independently confirmed the findings of Fradkin and Hirsch. Recently Caron
and Moukouri [14] using the density matrix renormalization group (DMRG) method studied
the XY spin chain coupled to dispersionless phonons and showed that quantum fluctuations
reduce the spin-Peierls gap and even destroy the dimerization when the phonon frequency
becomes appreciably larger than the gap.

The coupled spin–phonon system for all values of the coupling parameter is a very
difficult problem. However, one may gain considerable insight into the stability problem by
simply considering limiting situations. By analysing the stability of these limits a qualitative
picture of possible phases (or the ground state) will emerge. In the present work we will
investigate the effect of spin–phonon interaction in the non-adiabatic limit, i.e. when phonons
are certainly fast. In this case we will treat the phonons as fast variables and derive an
effective interacting fermion model.

We propose to study an XY spin chain whose magnetic interaction depends on the bond
length. The reason for this study is twofold: (i) the undeformed spin chain Hamiltonian
can be solved exactly, (ii) the model contains the essential elements for the spin-Peierls
transition, that is coupling to intermolecular motion. In the future it will be of interest
to study the Heisenberg chain with a next-nearest-neighbour frustration term to make the
model a more realistic match to the inorganic spin-Peierls systems.

The paper is organized as follows. In section 2 we obtained an effective fermionic
Hamiltonian for the XY model in the presence of the spin–phonon interaction. The effective
Hamiltonian is then solved within the mean-field approximation taking into account the
dimerization as well as antiferromagnetic ordering. The results of the numerical solution and
its implications are discussed in section 3. In section 4 we solved this effective Hamiltonian
with the help of the bond operator technique. Finally we present our conclusion in section 5.

2. Formulation

We start with the XY model in the presence of the spin–phonon interaction on a linear chain

H =
∑
l

[(J + g(b†l + bl − b†l+1− bl+1)](S
X
l S

X
l+1+ SYl SYl+1)+ ω

∑
l

b
†
l bl (1)

wherel denotes the site index of theN site linear chain,SXl andSYl are components of the
local XY spin of value1

2, bl(b
†
l ) is the annihilation (creation) operator for the vibration of a

molecule at sitel andJ is the magnetic exchange interaction between the nearest-neighbour
spins. Hereω accounts for the dispersionless vibrational spectra for molecular motion along
the chain direction andg is the spin–phonon interaction [22].

We transform the spin operator to a spinless fermion representation using the Jordan–
Wigner transformation [23]

SXl + iSYl = S+l = exp

(
−iπ

l−1∑
j

d
†
j dj

)
d
†
l (2)

SXl − iSYl = S−l = exp

(
iπ

l−1∑
j

d
†
j dj

)
dl (3)
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Szl = 1
2 + d†l dl (4)

to make use of the growing understanding of a one-dimensional Fermi system.
After the Jordan–Wigner transformation, the Hamiltonian (1) can be written in terms of

fermion operatorsd†l anddl as

H = 1

2
J
∑
l

Pl + 1

2
g
∑
l

(b
†
l + bl)(Pl − Pl−1)+ ω

∑
l

b
†
l bl (5)

where

Pl = d†l dl+1+ d†l+1dl. (6)

In the adiabatic approximation the spin–phonon interaction deforms the lattice to undergo
the Peierls instability. To take into account the lattice distortion due to spin–phonon
coupling, in our case we choose a variational wavefunction|ψ〉ph = U |0〉 with

U = exp

(
λ

2ω

∑
l

(b
†
l − bl)(Pl − Pl−1)

)
(7)

for the phonon subsystem, where|0〉 is the zero-phonon state andU describes a modified
Lang–Firsov transformation [24, 25]. In this formalism the effective fermion Hamiltonian
is written as

Heff = 〈0|HT |0〉 (8)

with

HT = U−1HU = J

2

∑
l

U−1PlU + g − λ
2

∑
l

(b
†
l + bl)(Pl − Pl−1)

−4g′2
∑
l

nl + 4g′2
∑
l

nlnl+1+ g′2
∑

(1− 2nl)(d
†
l−1dl+1+ d†l+1dl−1)

+ω
∑
l

b
†
l bl (9)

where

nl = d†l dl (10)

g′2 =
(
gλ

2ω
− λ2

4ω

)
. (11)

In the above equationbl andb†l are the creation and annihilation operators for the phonon
system vibrating about the displaced equilibrium position(λ/ω)(Pl − Pl−1) of the lattice.
Clearly, λ is proportional to a lattice displacement created by the spin–phonon interaction
which has to be determined variationally. Whenλ = g the transformation is exactly the
Lang–Firsov [24] transformation where the fermion–phonon term is diagonalized exactly
and the fermion hopping term is renormalized by dressed phonons. To obtain an effective
fermionic Hamiltonian we take the average over the zero-phonon state of the transformed
phonon subsystem and neglect terms of the order ofλ4/ω4 and higher. In this approximation
the effective Hamiltonian is

Heff (λ) = J

2

(
1− 3λ2

4ω2

)∑
l

(d
†
l dl+1+ d†l+1dl)+

Jλ2

8ω2

∑
l

(d
†
l dl+3+ d†l+3dl)

−4g′2
∑
l

nl + 4g′2
∑
l

nlnl+1+ g′2
∑

(1− 2nl)(d
†
l−1dl+1+ d†l+1dl−1)

+O(λ4). (12)
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Now, the above effective Hamiltonian (12) is too complicated to solve exactly.
Therefore one has to look for approximate methods. We calculate the ground-state energy
Eeff (λ) of the effective Hamiltonian (13) in the framework of mean-field theory. We assume
solutions which break the symmetry between even and odd sites with respect to the number
of fermions on the site and to the corresponding hopping probability. Both of these kinds of
order open a gap at the Fermi momentum at half-filling (i.e. when the total spinSz is zero)
and lower the ground-state energy. We will consider four variational parameters such asne,
no, he andho (wheree denotes even sites ando implies odd sites). All these variables are
not independent because they are subject to the fermion number conservation constraint

n = 〈d
†
2ld2l + d†2l+1d2l+1〉

2
= (ne + no)

2
. (13)

For half-filling (Sz = 0) n = 1
2. The three remaining variational parameters are then the

antiferromagnetic order parameter

m = 〈d
†
2ld2l − d†2l+1d2l+1〉

2
= (ne − no)

2
(14)

the dimerized order parameter

γ = 〈d
†
2ld2l+1− d†2l+1d2l+2〉

2
= (he − ho)

2
(15)

and the average hopping probability

h = 〈d
†
2ld2l+1+ d†2l+1d2l+2〉

2
= (he + ho)

2
. (16)

Here 〈 〉 implies the expectation value over the ground state. Within the limitation of the
Hartree–Fock approximation our effective Hamiltonian can be written as

Heff = J

2

(
1− 3λ2

4ω2

)∑
l

(d
†
l dl+1+ d†l+1dl)+

Jλ2

8ω2

∑
l

(d
†
l dl+3+ d†l+3dl)

+8g′2γ
∑
l

(−1)l(d†l dl+1+ d†l+1dl)+ 8g′2
∑

(
1

2
− (−1)lm)nl)

−4g′2(
1

4
−m2− 2γ 2)N − 2g′2N +O

(
λ4

ω4

)
. (17)

To diagonalize the Hamiltonian (18) we transform the operators from coordinate space to
momentum space

c
†
j =

1√
N

∑
k

c
†
ke

ikj (18)

cj = 1√
N

∑
k

cke
−ikj . (19)

Due to the reduced symmetry, eachk state is coupled to the statek+π . So it is convenient
to write the Hamiltonian in the reduced zone−π/2 to π/2 and label the states by band
indices l andu. In this representation the Hamiltonian is a two-band Hamiltonian where
the bandsl andu are coupled to eachk

Heff =
∑
k

αlkd
l†
k d

l
k +

∑
k

αuk d
u†
k d

u
k +

∑
k

βkd
l†
k d

u
k +

∑
k

β∗k d
u†
k d

l
k

−4g′2(
1

4
−m2− 2γ 2)N +O

(
λ4

ω4

)
(20)
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where

αlk = J
(

1− 3λ2

4ω2

)
cos(k)+ 2Jλ2

8ω2
cos(3k) (21)

αuk = −J
(

1− 3λ2

4ω2

)
cos(k)− 2Jλ2

8ω2
cos(3k) (22)

βk = −8g′2(m− 2iγ sin(k)). (23)

We diagonalize this Hamiltonian by a Bogoliubov–Valatin transformation and obtain
Heff

ω
=
∑
k

Elka
†
kak +

∑
k

Euk b
†
kbk − 4g′2(

1

4
−m2− 2γ 2)N (24)

with upper and lower band

E
u/l

k = ±
√
αl2k

ω2
+ 64

g′4m2

ω2
+ 256g′4γ 2 sin(k)2

ω2
. (25)

From equation (25) it is clear that the energy spectrum has been split into two
separate bands (for non-zerom or γ ) characterized by the Bogoliubov transformed creation
(annihilation) operatorsa†k(ak) and b†k(bk). For half-filling (Sz = 0) the lower band is
completely filled in the ground state. We will take the expectation value of equations (14)
and (15) over the ground state to obtain a set of self-consistent equations

1= 8
g′2

ωN

k=π/2∑
k=−π/2

1

|Elk|
or m = 0 (26)

and

1= 16
g′2

ωN

k=π/2∑
k=−π/2

sin(k)2

|Elk|
or γ = 0. (27)

If we retain terms up to the order ofg2/ω2 the integrals involving equations (26) and (27)
can be expressed in terms of elliptic functions of the first kind(K(ν)) and the second kind
(E(ν)) to give

1= 8g′2
√
ν

πJ (1− 3λ2

2ω2 )
K(ν) or m = 0 (28)

with

ν = [1+ 64g′4m2

J 2(1− 3λ2/(2ω2))
]−1

1= − 32g′2

πJ (1− 3λ2

2ω2 )

d

dν ′
E(ν ′) or γ = 0. (29)

ν ′ = 1− 256g′4γ 2

J 2(1− 3λ2/(2ω2))
.

For smallm or γ the equations provide asymptotic expressions for (i) the antiferromagnetic
and (ii) the dimerized phase:

(i) the antiferromagnetic phase (γ = 0;m 6= 0)

γ = 0;
m = pj exp

[
−πpj

(
1− 1.38629

pj

)]
(30)
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(ii) the dimerized phase (m = 0; γ 6= 0)

m = 0;
γ = pj

2
exp

[
−πpj

2

(
1− 0.773 08

pj

)]
(31)

where

pj = J 1− 3λ2/(2ω2)

8g′2
.

When m or γ is large we solve equation (26) or (27) numerically to get the
antiferromagnetic or dimerized order parameter.

Finally we minimize the ground-state energy (EG(λ)) of the HamiltonianHeff with
respect toλ to getλ and the ground-state energy of the system.

3. Results and discussion of the mean-field study

We have computed the ground-state energy, the lattice distortion and the energy gap for
the XY system in the presence of the spin–phonon interaction when the phonon frequency
is certainly fast. The results of our calculation show some distinguishing features in the
phase diagram which are absent when phonons are treated adiabatically. In the adiabatic
approach the spin–phonon coupling to the XY spin system always gives rise to a dimerized
phase, whereas our non-adiabatic approach predicts dimerized and antiferromagnetic phases
depending on the values ofg/ω and J/ω. Here we present the result for two values of
the exchange interactionJ/ω = 0.2 and 0.4. In our calculation we have neglected terms
of the orderλ4/ω4 or higher. So we do not extend our calculation to large spin–phonon
couplingg/ω and confine ourselves tog/ω 6 0.5. In figure 1 we have shown the variation
of the lowest energy in the antiferromagnetic as well as the dimerized phase to determine
the ground state of the system. ForJ/ω = 0.2 we find that the dimerized phase represents
the ground state wheng/ω < 0.46 and the antiferromagnetic phase becomes the ground

-0.18

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

EG

g
!

a

b

c

d

Figure 1. Variation of the minimum energy (in units of the energy of the phonon) with respect
to the spin–phonon coupling (g/ω) in the antiferromagnetic phase forJ/ω = 0.2 (curvea) and
J/ω = 0.4 (curvec) and in the dimerized phase forJ/ω = 0.2 (curveb) andJ/ω = 0.4 (curve
d).
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state wheng/ω > 0.46. The critical value for the dimerized to antiferromagnetic phase
transition increases with the increase ofJ/ω. For J = 0.4 the above-mentioned critical
value ofg/ω is higher than 0.5 and it is not shown in our plot because we have confined
our investigations tog/ω = 0.5.

In figure 2 we show the variation of the dimerized order parameterγ with g/ω for
J/ω = 0.2 and 0.4. The figure shows that wheng/ω is less than 0.1 the dimerized order
parameter is almost zero. From equation (31) we obtainγ ∼ 10−20 at g/ω = 0.1. In the
mean-field calculation we neglect quantum fluctuations and always find a non-zero value
of the order parameter. However, the quantum fluctuation due to spin excitation would
have drastic repercussions on the value ofγ and could destroy this small value ofγ to
give a spin liquid phase. So one may expect a critical spin–phonon coupling (gc/ω) for
the onset of dimerization. Caron and Moukouri [14] have shown the existence of critical
spin–phonon coupling (gc/ω) through the density matrix renormalization group calculation
where quantum fluctuations are taken into account rigorously. It is also evident from our
figure 2 that the dimerization order parameter decreases with the increase ofJ/ω which
means that we expect a largergc/ω for J/ω = 0.4.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
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Figure 2. Variation of the dimerized order parameterγ with respect tog/ω for J/ω = 0.2
(curvea) andJ/ω = 0.4 (curveb) in the dimerized phase.

Due to the Peierls instability we have two types of bond length, one is greater than the
unperturbed lattice constant and the other is less than the unperturbed lattice constant. We
represent this lattice deformation by〈b†l + bl − b†l+1 − bl+1〉 = (−1)lδ. In figure 3 we plot
the variation ofδ = 2λγ with respect tog/ω for J/ω = 0.2 and 0.4 in the dimerized phase.
It is seen from the figure that for a smallg/ω ratio the lattice distortion is almost zero and
it increases with an increase ofg/ω or with a decrease ofJ/ω.

We have also investigated the excitation energy gap (1) which is obtained by calculating
the lowest excited state energy (i.e. lowest energy of the upper band). In figure 4 we plot
the variation of1 with respect tog/ω for J/ω = 0.2 and 0.4. Like the dimerization order
parameter,1 is also very small for small spin–phonon coupling. The result also points to
the possibility of gapless spectra forg/ω < gc/ω and ‘gap-full’ spectra forg/ω > gc/ω.

In figure 5 we show the variation of the critical valueg′c/ω for the dimerized to
antiferromagnetic phase transition with respect toJ/ω. We observe a decrease ofg′c/ω
with the decrease ofJ/ω and in the limitJ/ω→ 0 the system shows an antiferromagnetic
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Figure 3. Variation of the lattice distortionδ with respect tog/ω in the dimerized phase for
J/ω = 0.2 (curvea) andJ/ω = 0.4 (curveb).
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Figure 4. The excitation energy gap1 as a function ofg/ω in the dimerized phase forJ/ω = 0.2
(curvea) andJ/ω = 0.4 (curveb).

order for any finite spin–phonon coupling. This feature is significantly different if the
spin–phonon coupling is treated adiabatically where the ground state of the XY model with
spin–lattice interaction always represents the dimerized phase. Our results signify that the
quantum correction may play a very important role in determining the phases of the ground
state of the spin-Peierls systems.

4. The bond operator method

In the last section we observed the dimerized ground state in the intermediate range of the
spin–phonon coupling parameter. A useful approach to describe the dimerized phase is the
bond operator technique introduced by Chubukov [26] and Sachdev and Bhatt [27]. Recently
the bond operator method has been used successfully to study the frustrated Heisenberg chain
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Figure 5. Variation of the critical valueg′c/ω for the dimerized to antiferromagnetic phase
transition with respect toJ/ω.

[28, 29] and two spin ladder models [30, 31]. In this section we will study the instability
of the dimerized phase of our effective Hamiltonian (equation (12)) with the help of a quite
different approach, namely the bond operator technique. For this purpose we transform our
effective fermionic Hamiltonian to the corresponding effective spin Hamiltonian by the well
known Jordon–Wigner transformation [23]. In spin language the effective Hamiltonian can
be written as

Heff = J

2

(
1− 3λ2

4ω

)∑
l

(S+l+1S
−
l + S+l S−l+1)+ g′2

∑
l

(S+l S
−
l+2+ S+l+2S

−
l )

+4g′2
∑
l

Szl S
z
l+1+

Jλ2

8ω2

∑
l

(Szl+1S
z
l+2S

+
l S
−
l+3+Szl+1S

z
l+2S

+
l+3S

−
l )−g′2N (32)

whereS+l = Sxl + iSyl and S−l = Sxl − iSyl and Sxl , Syl , Szl are thex, y, z components
of a spin-12 operator at the sitel. In our mean-field calculation we found that the term
involving the the third nearest-neighbour fermionic interaction does not play a significant
role in determining the phases of the system. So for our present calculation we shall neglect
the last term in our effective spin Hamiltonian. In the bond operator method, the Hilbert
space of spin degrees of freedom is represented in terms of singlets and triplets on local
bonds (nearest-neighbour sites). The corresponding one-singlet|si〉 and three-triplet|tαi〉
(whereα = x, y, z) states are created out of the vacuum by applying the operators

|si〉 = s†i |0〉 =
1√
2
(| ↑2i↓2i+1〉 − | ↓2i↑2i+1〉)

|txl〉 = t†xl|0〉 = −
1√
2
(| ↑2l↑2l+1〉 − | ↓2l↓2l+1〉)

|tyi〉 = t†yl|0〉 =
i√
2
(| ↑2l↑2l+1〉 + | ↓2l↓2l+1〉)

|tzl〉 = t†zl|0〉 =
1√
2
(| ↑2l↓2l+1〉 + | ↓2l↑2l+1〉).

(33)
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The operatorss†l (sl), t
†
αl (tαl) where α = x, y, z, are chosen to satisfy the bosonic

commutation relations

[sl, s
†
m] = δl,m [s†l , t

†
α,l ] = 0 [tα,l, t

†
β,m] = δα,βδl,m. (34)

In order to ensure that the physical states are either singlet or triplet one has to impose the
constraints

s
†
i si +

∑
α=x,y,z

t
†
αi tαi = 1. (35)

Unfortunately, it is a difficult task to satisfy this local constraint and the dimer
interactions exactly. In order to perform the calculation of the ground-state energy and the
lowest excited states we follow the approximations which are generally used to calculate the
triplet dispersions in this method [28]: (i) we treat the local constraint by eliminating the
singlet operator vias†i = si = (1−

∑
α t
†
αi tαi)

1
2 , (ii) we restrict ourselves to quadratic terms

only. It was previously shown by Gopalonet al [32] and Sachdev and Bhatt [27] that the
effect of higher-order terms on the ground-state energy or lowest excitations is quite small
and therefore we expect that this approximation will not modify our results significantly.

Within the above-mentioned approximations the effective Hamiltonian reduces to

Heff = −J
4

(
1− 3λ2

4ω2

)
N − 3g′2

2
N +

[
J

2

(
1− 3

λ2

4ω2

)
+ 2g′2

]∑
l

(t
†
xl txl + t†yl tyl+1)

+
[
−1

4
J

(
1− 3λ2

4ω2

)
+2g′2

]∑
l

(t
†
xl txl+1+t†x,l t†xl+t†yl tyl+1+t†yl t†yl+1+H.C.)

+J
(

1− 3λ2

4ω2

)∑
l

t
†
zl tz,l − g′2

∑
l

(t
†
zl tzl+1+ t†zl t†zl+1+ H.C.). (36)

This one-body Hamiltonian can be diagonalized readily to give

Heff = −J
4

(
1− 3λ2

4ω2

)
N − 3g′2

2ω
N +

∑
k,α=x,y,z

√
((Aαk )

2− 4(Bαk )
2)(a

α†
k a

α
k + 1

2)

−1

2

∑
k,α=x,y,z

Aαk (37)

where

A
x,y

k =
J

2

(
1− 3λ2

4ω2

)
+ 2g′2− 1

2

[
J

(
1− 3λ2

4ω2

)
− 8g′2

]
cos(2k)

B
x,y

k = −
1

4

[
J

(
1− 3λ2

4ω2

)
− 8g′2

]
cos(2k)

Azk = J
(

1− 3λ2

4ω2

)
− 2g′2 cos(2k)

Bzk = −g′2 cos(2k).

(38)

Finally we minimize the ground-state energy

EG(λ) = −J
4

(
1− 3λ2

4ω2

)
N − 3g′2

2ω
N + 1

2

∑
k,α=x,y,z

√
(Aαk )

2− 4(Bαk )
2− 1

2

∑
kα=x,y,z

Aαk (39)

with respect toλ to obtainλ and the ground-state energy of the system. Here the ground state
is dimerized and the excitations are characterized by the two types of dispersion relations
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[(A(x,y)k )2−4(B(x,y)k )2]1/2 and [(A(z)k )
2−4(B(z)k )

2]1/2. Now the ground state is stable as long
as the excitations are well defined. Therefore, the dimerized ground state becomes unstable
when √

(A
(x,y)

k=0 )
2− 4(B(x,y)k=0 )

2 = 0 (40)

or √
(A

(z)

k=0)
2− 4(B(z)k=0)

2 = 0. (41)

Equations (40) and (41) give two values of the critical spin–phonon coupling constant
g′c1/ω andg′c2/ω between which the ground state is dimerized. In figure 6 we have plotted
g′c1 = g′c1/ω and g′c2 = gc2

ω
as a function ofJ/ω. From the analysis of the results of the

bond operator method and the mean-field approach it is clear that our system undergoes two
types of phase transition: (i) one is from the spin liquid phase to the dimerized phase which
occurs atg = gc1 and (ii) the other is from the dimerized phase to the antiferromagnetic
phase which occurs atg = gc2 as we vary the spin–phonon coupling parameter (g) from a
very low value.
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Figure 6. Variation of the critical valuesg′c1 for the spin liquid to dimerized phase transition
andg′c2 for the dimerized to antiferromagnetic phase transition with respect toJ/ω.

5. Conclusion

In summary, we have studied the interacting spin–phonon problem non-adiabatically. We
have chosen the Lang–Firsov variational wavefunction to integrate out the phonon degrees
of freedom and obtain an effective spinless fermionic Hamiltonian which is solved in the
framework of the mean-field approximation and the bond operator technique to calculate the
ground-state energy, the minimum excitation energy gap and the lattice distortion developed
in the ground state. Our investigation indicates two types of phase transition, one is from
the spin liquid phase to the dimerized phase and the other is from the dimerized phase to
the antiferromagnetic phase as we vary the spin–phonon coupling from a very low value.
However, these phase transitions are absent if we neglect the quantum lattice fluctuations
and treat the problem in the adiabatic approximation. So it is evident that the behaviour of a
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spin-Peierls system is significantly modified by quantum lattice fluctuations and an intense
investigation is required to explore the effect of non-adiabatic corrections to the spin-Peierls
systems. For a realistic calculation of an inorganic spin-Peierls system like CuGeO3 one
has to study the Heisenberg spin chain with next-nearest-neighbour frustration.
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